Introduction to Communicating
Sequential Process (CSP)
(Lecture 8)

Mannheim, September 2007

Contents

* Sequential Composition

e Semantics

Termination

Forms of unsuccessful termination resulting from
design flaws are
e Stop, representing deadlock

* Div representing livelock.

By comparison process Skip represents deliberate
successful termination on completion of a task.

A terminating trace of process P 1s a trace ¢ after
which P may terminate

P after t = Skip.

Sequential Composition

If P and Q are processes over then
P, 0
denotes their sequential composition which first

behaves like P; if P terminates it then behaves
like Q; 1f P doesn’t terminate neither does P; Q.

The iteration, P*, of P 1s defined P* =P ; P*

Sequential Composition: Example

A vending machine which serves one
customer 1s

V' 1 = coin — (choc — Skip | toffee — Skip).
One which serves two 1s
Vi;Vli.
And one which serves customers forever 1s
V=VI*

Sequential Composition: Example

Recall the infinite mutual recursion

R =R, = (around - R |up — R))
Ry =(up — R, [down — R)).

That process 1s expressed in finite form using sequential
composition

Z = (around — Z | up — P ; 7)
P=(up — P; P|down— Skip).

Sequential Composition: Example

The language consisting of strings having
any number of a’s, followed by a b,
followed by the same number of ¢’s as a’s
1S

{<a>n "N <p>"<c>" | n [NY.
A process for that language 1s
L =uX-e(b— Skip
la— (X, c— Skip)).

Sequential Composition: Example

The language whose strings start as above and are
then followed by a d and then the same number of
e’sasa’sis
{<a>" "N "<c>""N<d>"<e>"|n [N}.
A process for that language 1s
M = (L;d — Skip) [|{c,d}|] / L,

where the 1njective relabelling f'1s defined

fa=c fb=d fc=e.

Sequential Composition: Laws

Sequential composition is associative and
distributive in each argument, with unit Skip

*(P;Q);R=P;(Q;R)
*(PI71Q);R=(P,;R)(Q;R)
*P;(Q7R)=(P; Q) [1(P;R)

e Skip ;, P=P =P ; Skip

Stop 1s a left zero, as 1s any divergent process
e Stop ; P = Stop

e Div; P=Div ...

Sequential Composition: Laws

 Processes do not share their local variables.
Thus 1n P ; Q the final state of P 1s
independent of the 1nitial state of Q.

For example 1n the sequential composition
(...—outlx — Skip) ; (in?x —...)

the value of x in the first process has no
relationship to the value of x in the second.

Sequential Composition: Laws

For example
in?x — out!x — Skip

+
(in’x — Skip) ; (out!x — Skip).

Indeed the latter process may output any
value of the appropriate type on channel out
whilst the former can output only the value
it has 1nput on 1n.

Sequential Composition: Laws

 However, provided a variable x 1s not free
in process O

(?7x:A-> P(x));0 = ?x:4 -> (P(x),;0)

Sequential Composition: Traces

The event of successful termination is represented by V. an
event not 1n any 2. It occurs only as the last event of a
terminating process and 1s not available like other elements of
for synchronisation, nor can i1t be hidden or renamed.

traces Skip = {<>, <V>}.
Write

2 =20V

X = TR {tA<V> [t X*)

Sequential Composition: Traces

* The traces of P; QO consist of those of P or those
terminating traces of P with V removed and
catenated with a trace of 0

traces(P ; Q) = traces P [1{s "t |(s N <V> [traces P and t || traces Q).

Sequential Composition: Traces

* The traces of P; QO consist of those of P or those
terminating traces of P with V removed and
catenated with a trace of 0

traces(P ; Q) = traces P [1{s "t |(s N <V> [traces P and t || traces Q).

Sequential Composition: Traces

* The traces of P; QO consist of those of P or those
terminating traces of P with V removed and
catenated with a trace of 0

traces(P ; Q) = traces P [1{s "t |(s N <V> [traces P and t || traces Q).

Sequential Composition: Traces

* The traces of P; QO consist of those of P or those
terminating traces of P with V removed and
catenated with a trace of 0

traces(P ; Q) = traces P [1{s "t |(s N <V> [traces P and t || traces Q).

Assignment

* Ifx 1s a program variable and e 1s an expression
and P a process

(x.=e,P)
1s a process that behaves like P, except that the
initial value of x is defined to be the initial value

of the expression e. Intial values of all other
variables are unchanged.

Assignment: Examples

* A process that behaves like Rocket

Xl = uX (around -> X | up -> (n:=1,X))
<n=0r
(up -> (n:=n+1,X) | down -> (n:=n-1,X))

Assignment: Examples

« A process which divides a natural number x by a positive
number y, assigning the quotient to g and the remainder to r

QUOT = (q:=xty; r:=x-q.y)

Assignment: Laws

(x.=x) = SKIP

(x:=e; x:=f(x)) = (x:=f(e))

If x, y is a list of distinct variables (x:=e) = (x,y .= e,y)

If x,v,z are of the same length as e,f,g respectively
(xyz:=efg) = (xzy = egf)

x:=e,; (P <b(x)> Q) = (x:=e;P) <b(x)> (x:=e, Q)

((x:=e,P)||0) = (x:=e ; (P||0)) provided that P and Q

are data independent...

Assignment: Laws

(x.=x) = SKIP

(x:=e; x:=f(x)) = (x:=f(e))

If x, y is a list of distinct variables (x:=e) = (x,y .= e,y)

If x,v,z are of the same length as e,f,g respectively
(xyz:=efg) = (xzy = egf)

x:=e,; (P <b(x)> Q) = (x:=e;P) <b(x)> (x:=e, Q)

((x:=e,P)||0) = (x:=e ; (P||0)) provided that P and Q

are data independent...

Semantics

Traces do not distinguish internal and external choice

traces(P '71Q) = traces(P[]Q).
How do those processes differ?
e Since a — A//b — B offers its environment the choice between a
and b the environment cannot refuse either; whichever of them 1s
offered by the environment must be performed.
* Since a — A /7b — B permits its environment no say in which of
the two processes occurs, 1t may refuse either a or b but not
both; whichever of them 1s offered by the environment, deadlock
may occur.

Semantics: Refusals

If P 1s a (nonsequential) process its refusals, refusals P,
are those subsets £ of the universe which it may (initially)
refuse to perform; if the environment offers a general
choice from E, deadlock may occur.
For example over universe {a, b/,

refusals(a — A[]b — B) = {{ }}

refusals(a — A I'7b — B) = {{}, {b}, {a}}.
Refusals thus distinguish internal and external choice.

Semantics: Refusals

Observe

refusals(a — A) = {{ }, {b}}
refusals(b — B) = {{ }, {a}}.

Thus from that example, and 1n general,

refusals(P[]Q) = refusals(P) N refusals(Q)
refusals(P 77 Q) = refusals(P) | refusals(Q).

Semantics: Failures

 If Pis a (nonsequential) process its failures, failures P,
consists of those pairs (¢ ,E) for which ¢ 1s a trace of P
and £ 1s a refusal of P after ¢ . Thus after it has engaged
in trace ¢ the process may refuse F.

* For example over universe 2= {a, b}:
failures Stop = {(<>, { }), (<>, {a}), (<>, {b}), (<>, {a, b})}
={(<>E) | ELX}
* The traces of a process can be reclaimed from 1its
failures
traces P = {t : X2* | (¢, { }) U failures P}.

Semantics: Failures

* Jailures(a — Stop) = {(<>, { }), (<>, {b}), (<a>, { }), (<a>,
(a}), (<a>, {b}), (<a>, {a, b))} = {(<>.E) | a g E 12}
{(<a>.E) | E 2

* failures(b — Stop) = {(<>,{}), (<>, {&}), (,{}), (<>,
(a}),(, {b}), (, {a, b})}={(<>E) | b g E 1] 2 }[]
{(E) | E 12X}

Semantics: Failures

failures(a — Stop[]b — Stop)
(<>) (<a>, {}), (<a>, {a}), (<a>, {b}), (<a>, {a, b}),
(, {}), (,{a}), (, {b}), (, {a, b})}

(<>)]
]

{(<a>.E) | E L2}
N
{(<D>.E) | E 12}

Semantics: Failures

failures(a — Stop 1 b — Stop)

(<>} (<>.{a}), (<>, {b}), (<a>, {}), (<a>, {a)), (<a>, {b)),
(<a>, {a, b}),(,{}), (, {a}), (, {b}), (, {a, b});

(<> 1), (<>{a)), (<>, {b})}
]

{(<a>.E) | E L2}
N
{(<D>.E) | E 12}

With failures we can distinguish internal from external choice.

Semantics: Failures

Failures refinement ordering
Fc.G=F1G.

Informally, every trace of G 1s a trace of /' and 1f G
deadlocks then /' deadlocks; thus both the trace
behaviour and the deadlock behaviour of G conform

to that of F..

Note: restricted to traces, = yields refinement = in
the traces model:

F =, G implies F =, G.

Semantics: Failures

The failures model is finer than the traces model
(it distinguishes M from []) but is still not fully
abstract for CSP (it doesn’t distinguish Div from

Stop).

Semantics: Divergences

Failures do not distinguish deadlock and divergence
failures Stop = failures Div = {(<>E) | E] 2}.

How do those two processes differ?

 Stop performs no events, deadlocks immediately and
does not diverge

* D1v performs no events but diverges immediately.

Semantics: Divergences

For process P the divergences of P are the traces after which it
diverges
divergences P = {t : traces P | P after t = Div},.

For example over universe {a, b/,

divergences Stop = { }

divergences Div = ?
Recall that Div 1s minimal since Div /7 P = Div. Stmilarly from any
point 1n the evolution of a process, divergent behaviour 1s
indistinguishable from arbitrary behaviour.

Semantics: Divergences

Thus after diverging a process behaves like the least element: any
trace 1s a divergence and any subset a refusal.
Hence, because <> [divergences Div,
divergences Div = 2™
failures Div = 2* x |P X,
Divergences thus distinguish Stop and Div.
The healthiness conditions for divergences are
e if t [l divergences P and u |1 2* then t " u] divergences P
 if t [l divergences P then for all E 1 2, (t ,E)U failures P.

Semantics: Failures & Divergences

* For finite universe the failures & divergences
model of processes over 2 consists of the set N
of pairs (F,D) : F' x 2 *

* satisfying

et D Hull2* Ut ullD
«tO0DC(t,E)F.

Semantics: Failures & Divergences

The space 1s partially ordered by the failures &
divergences refinement ordering

(F,D) =y (GE)=F[1GUDLIE
Thus both the failures behaviour and the
divergences behaviour of (G,E) conform to that of
(F.D).

Semantics: Failures & Divergences

Home exercise: Study the failures and divergence

semantics of the constructs of CSP.

