
Introduction to Communicating
Sequential Process (CSP)

(Lecture 8)

Mannheim, September 2007

Contents

• Sequential Composition
• Semantics

Termination
Forms of unsuccessful termination resulting from
design flaws are
• Stop, representing deadlock
• Div representing livelock.

By comparison process Skip represents deliberate
successful termination on completion of a task.
A terminating trace of process P is a trace t after
which P may terminate

P after t ⊑ Skip.

Sequential Composition

If P and Q are processes over then
P ; Q

denotes their sequential composition which first
behaves like P; if P terminates it then behaves
like Q; if P doesn’t terminate neither does P;Q.

The iteration, P*, of P is defined P* = P ; P*.

Sequential Composition: Example

A vending machine which serves one
customer is

V 1 = coin → (choc → Skip | toffee → Skip).
One which serves two is

V 1 ; V 1.
And one which serves customers forever is

V = V 1*.

Sequential Composition: Example

Recall the infinite mutual recursion

R = R0 = (around → R | up → R1)
Rn+1 = (up → Rn+2 | down → Rn).

That process is expressed in finite form using sequential
composition

Z = (around → Z | up → P ; Z)
P = (up → P ; P | down → Skip).

Sequential Composition: Example

The language consisting of strings having
any number of a’s, followed by a b,
followed by the same number of c’s as a’s
is

{<a>n ^ ^<c>n | n � N}.
A process for that language is

L = μX • (b → Skip
| a → (X ; c → Skip)).

Sequential Composition: Example

The language whose strings start as above and are
then followed by a d and then the same number of
e’s as a’s is

{<a>n ^ ^<c>n ^ <d>^<e>n | n � N}.
A process for that language is

M = (L;d → Skip) [|{c,d}|] f L,
where the injective relabelling f is defined
f a = c, f b = d, f c = e.

Sequential Composition: Laws
Sequential composition is associative and

distributive in each argument, with unit Skip
• (P ; Q) ; R = P ; (Q ; R)
• (P ⊓ Q) ; R = (P ; R) ⊓ (Q ; R)
• P ; (Q ⊓ R) = (P ; Q) ⊓ (P ; R)
• Skip ; P = P = P ; Skip
Stop is a left zero, as is any divergent process
• Stop ; P = Stop
• Div ; P = Div …

Sequential Composition: Laws

• Processes do not share their local variables.
Thus in P ; Q the final state of P is
independent of the initial state of Q.
For example in the sequential composition

(. . . → out!x → Skip) ; (in?x → . . .)
the value of x in the first process has no
relationship to the value of x in the second.

Sequential Composition: Laws

For example
in?x → out!x → Skip

≠
(in?x → Skip) ; (out!x → Skip).

Indeed the latter process may output any
value of the appropriate type on channel out
whilst the former can output only the value
it has input on in.

Sequential Composition: Laws

• However, provided a variable x is not free
in process Q
(?x:A -> P(x));Q = ?x:A -> (P(x);Q)

Sequential Composition: Traces
The event of successful termination is represented by √, an
event not in any Σ. It occurs only as the last event of a
terminating process and is not available like other elements of
for synchronisation, nor can it be hidden or renamed.

traces Skip = {<>, <√>}.

Write

Σ √ = Σ � {√}

Σ√* = Σ* � {t ^ <√ > | t � Σ* }

Sequential Composition: Traces

• The traces of P; Q consist of those of P or those
terminating traces of P with √ removed and
catenated with a trace of Q

traces(P ; Q) = traces P �{s ^ t |(s ^ <√> � traces P and t � traces Q}.

Sequential Composition: Traces

• The traces of P; Q consist of those of P or those
terminating traces of P with √ removed and
catenated with a trace of Q

traces(P ; Q) = traces P �{s ^ t |(s ^ <√> � traces P and t � traces Q}.

Sequential Composition: Traces

• The traces of P; Q consist of those of P or those
terminating traces of P with √ removed and
catenated with a trace of Q

traces(P ; Q) = traces P �{s ^ t |(s ^ <√> � traces P and t � traces Q}.

Sequential Composition: Traces

• The traces of P; Q consist of those of P or those
terminating traces of P with √ removed and
catenated with a trace of Q

traces(P ; Q) = traces P �{s ^ t |(s ^ <√> � traces P and t � traces Q}.

Assignment

• If x is a program variable and e is an expression
and P a process

(x:=e;P)
is a process that behaves like P, except that the
initial value of x is defined to be the initial value
of the expression e. Intial values of all other
variables are unchanged.

Assignment: Examples

• A process that behaves like Rocket

X1 = μX. (around -> X | up -> (n:=1;X))
<n=0>
(up -> (n:=n+1;X) | down -> (n:=n-1;X))

Assignment: Examples

• A process which divides a natural number x by a positive
number y, assigning the quotient to q and the remainder to r

QUOT = (q:= x+y; r := x - q . y)

Assignment: Laws

• (x:=x) = SKIP
• (x:=e; x:=f(x)) = (x:=f(e))
• If x, y is a list of distinct variables (x:=e) = (x,y := e,y)
• If x,y,z are of the same length as e,f,g respectively

(x,y,z := e,f,g) = (x,z,y := e,g,f)
• x:=e ; (P <b(x)> Q) = (x:=e;P) <b(x)> (x:=e;Q)
• ((x:=e;P)||Q) = (x:=e ; (P||Q)) provided that P and Q

are data independent…

Assignment: Laws

• (x:=x) = SKIP
• (x:=e; x:=f(x)) = (x:=f(e))
• If x, y is a list of distinct variables (x:=e) = (x,y := e,y)
• If x,y,z are of the same length as e,f,g respectively

(x,y,z := e,f,g) = (x,z,y := e,g,f)
• x:=e ; (P <b(x)> Q) = (x:=e;P) <b(x)> (x:=e;Q)
• ((x:=e;P)||Q) = (x:=e ; (P||Q)) provided that P and Q

are data independent…

Semantics
Traces do not distinguish internal and external choice

traces(P ⊓ Q) = traces(P[]Q).
How do those processes differ?
• Since a → A[]b → B offers its environment the choice between a
and b the environment cannot refuse either; whichever of them is
offered by the environment must be performed.
• Since a → A ⊓ b → B permits its environment no say in which of
the two processes occurs, it may refuse either a or b but not
both; whichever of them is offered by the environment, deadlock
may occur.

Semantics: Refusals

If P is a (nonsequential) process its refusals, refusals P,
are those subsets E of the universe which it may (initially)
refuse to perform; if the environment offers a general
choice from E, deadlock may occur.
For example over universe {a, b},

refusals(a → A[]b → B) = {{ }}
refusals(a → A ⊓ b → B) = {{ }, {b}, {a}}.

Refusals thus distinguish internal and external choice.

Semantics: Refusals

Observe
refusals(a → A) = {{ }, {b}}
refusals(b → B) = {{ }, {a}}.

Thus from that example, and in general,
refusals(P[]Q) = refusals(P) ∩ refusals(Q)
refusals(P ⊓ Q) = refusals(P) � refusals(Q).

Semantics: Failures
• If P is a (nonsequential) process its failures, failures P,

consists of those pairs (t ,E) for which t is a trace of P
and E is a refusal of P after t . Thus after it has engaged
in trace t the process may refuse E.

• For example over universe Σ= {a, b}:
failures Stop = {(<>, { }), (<>, {a}), (<>, {b}), (<>, {a, b})}

= {(<>,E) | E �Σ }
• The traces of a process can be reclaimed from its

failures
traces P = {t : Σ* | (t , { }) � failures P}.

Semantics: Failures

• failures(a → Stop) = {(<>, { }), (<>, {b}), (<a>, { }), (<a>,
{a}), (<a>, {b}), (<a>, {a, b})} = {(<>,E) | a ∉ E �Σ}�
{(<a>,E) | E � Σ }

• failures(b → Stop) = {(<>, { }), (<>, {a}), (, { }), (,
{a}),(, {b}), (, {a, b})}= {(<>,E) | b ∉ E � Σ }�
{(,E) | E � Σ}

Semantics: Failures
failures(a → Stop[]b → Stop)
=
{(<>, { }), (<a>, { }), (<a>, {a}), (<a>, {b}), (<a>, {a, b}),
(, { }), (, {a}), (, {b}), (, {a, b})}
=
{(<>, { })}
�
{(<a>,E) | E �Σ }
�
{(,E) | E �Σ }

Semantics: Failures
failures(a → Stop ⊓ b → Stop)
=
{(<>, { }), (<>,{a}), (<>, {b}), (<a>, { }), (<a>, {a}), (<a>, {b}),

(<a>, {a, b}),(, { }), (, {a}), (, {b}), (, {a, b})}
=
{(<>, { }), (<>,{a}), (<>, {b})}
�
{(<a>,E) | E �Σ }
�
{(,E) | E �Σ }

With failures we can distinguish internal from external choice.

Semantics: Failures

Failures refinement ordering
F ⊑ F G ≡ F � G.

Informally, every trace of G is a trace of F and if G
deadlocks then F deadlocks; thus both the trace
behaviour and the deadlock behaviour of G conform
to that of F.

Note: restricted to traces, ⊑ F yields refinement ⊑T in
the traces model:

F ⊑F G implies F ⊑T G.

Semantics: Failures

The failures model is finer than the traces model
(it distinguishes ⊓ from []) but is still not fully
abstract for CSP (it doesn’t distinguish Div from
Stop).

Semantics: Divergences

Failures do not distinguish deadlock and divergence
failures Stop = failures Div = {(<>,E) | E � Σ}.

How do those two processes differ?
• Stop performs no events, deadlocks immediately and

does not diverge
• Div performs no events but diverges immediately.

Semantics: Divergences
For process P the divergences of P are the traces after which it
diverges

divergences P = {t : traces P | P after t = Div}.
For example over universe {a, b},

divergences Stop = { }
divergences Div = ?

Recall that Div is minimal since Div ⊓ P = Div. Similarly from any
point in the evolution of a process, divergent behaviour is
indistinguishable from arbitrary behaviour.

Semantics: Divergences
Thus after diverging a process behaves like the least element: any
trace is a divergence and any subset a refusal.
Hence, because <> � divergences Div,

divergences Div = Σ*
failures Div = Σ* × |P Σ.

Divergences thus distinguish Stop and Div.
The healthiness conditions for divergences are
• if t � divergences P and u � Σ* then t ^ u � divergences P
• if t � divergences P then for all E � Σ, (t ,E)� failures P.

Semantics: Failures & Divergences

• For finite universe the failures & divergences
model of processes over Σ consists of the set N
of pairs (F,D) : F × Σ *

• satisfying
• t � D � u � Σ* � t ^ u � D
• t � D � (t ,E) � F .

Semantics: Failures & Divergences

The space is partially ordered by the failures &
divergences refinement ordering

(F,D) ⊑N (G,E) ≡ F � G � D � E.
Thus both the failures behaviour and the
divergences behaviour of (G,E) conform to that of
(F,D).

Semantics: Failures & Divergences

Home exercise: Study the failures and divergence
semantics of the constructs of CSP.

